NATIONAL PHARMACEUTICAL REGULATORY AGENCY MINISTRY OF HEALTH MALAYSIA

TECHNICAL EVALUATION SUMMARY

PRODUCT NAME:

VAXNEUVANCE (Pneumococcal 15-Valent Conjugate Vaccine) Suspension For Injection Prefilled Syringe (MAL23126010AZ)

ACTIVE INGREDIENT:

Each 0.5 mL dose contains 32 mcg of total pneumococcal polysaccharide (2.0 mcg each of polysaccharide serotypes 1, 3, 4, 5, 6A, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F, and 33F, and 4.0 mcg of polysaccharide serotype 6B) conjugated to 30 mcg of CRM197 carrier protein.

PRODUCT REGISTRATION HOLDER:

Merck Sharp & Dohme (Malaysia) Sdn. Bhd.

PRODUCT MANUFACTURER:

Merck Sharp & Dohme B.V., Haarlem, Netherlands

APPROVAL DATE:

7 December 2023 (DCA 391)

1.0 BACKGROUND INFORMATION

- VAXNEUVANCE is a pneumococcal conjugate vaccine (PCV) that contains 15 distinct pneumococcal capsular polysaccharides individually conjugated to the CRM197 carrier protein originating from Corynebacterium diphtheriae C7.
- VAXNEUVANCE contains the 13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F) included in the registered vaccine Prevenar 13 (pneumococcal 13-valent conjugate vaccine [diphtheria CRM197 protein]), plus 2 additional serotypes (22F and 33F) that are not included in any currently registered conjugated PCV.

1.1 Proposed Indication:

VAXNEUVANCE is indicated for active immunisation for the prevention of invasive disease, pneumonia and acute otitis media caused by Streptococcus pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F in infants, children and adolescents from 6 weeks to less than 18 years of age.

VAXNEUVANCE is indicated for active immunisation for the prevention of invasive disease and pneumonia caused by Streptococcus pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F in individuals 18 years of age and older.

VAXNEUVANCE may not prevent disease caused by S. pneumoniae serotypes that are not contained in the vaccine.

The use of this vaccine should be in accordance with official recommendations.

1.2 Proposed Posology:

Dosage

Administer a 0.5 mL dose of VAXNEUVANCE intramuscularly.

Routine vaccination schedule in infants and children aged 6 weeks to less than 2				
	years			
Two-dose primary series followed by a booster dose	The recommended immunization regimen consists of 3 doses of VAXNEUVANCE, each of 0.5 mL. The first dose is given as early as 6 weeks of age, with a second dose administered 8 weeks later. The third (booster) dose is recommended between 11 through 15 months of age.			
Three-dose primary series followed by a booster dose	An immunization regimen consisting of 4 doses of VAXNEUVANCE, each of 0.5 mL, may be given. This primary series consists of 3 doses, with the first dose given as early as 6 weeks of age, with an interval of 4 to 8 weeks between doses in the primary series. The fourth (booster) dose is recommended between 11 through 15 months of age and at least 2 months after the third dose.			
Preterm infants (<37 weeks gestation at birth)	The recommended immunization regimen consists of a three dose primary series of VAXNEUVANCE followed by a fourth (booster) dose, each of 0.5 mL, as per three-dose primary series followed by a booster dose posology			
Prior vaccination with another pneumococcal conjugate vaccine	Infants and children who have begun immunization with another pneumococcal conjugate vaccine may switch to VAXNEUVANCE at any point in the schedule			

Catch-up vaccination schedule for children 7 months to less than 18 years of age				
Unvaccinated infants 7 to less than 12 months of age	3 doses, each of 0.5 mL, with the first two doses given at least 4 weeks apart. A third (booster) dose is recommended after 12 months of age, separated from the second dose by at least 2 months.			
Unvaccinated children 12 months to less than 2 years of age	2 doses, each of 0.5 mL, with an interval of 2 months between doses.			
Unvaccinated or not fully vaccinated children and adolescents 2 to less than 18 years of age	1 dose (0.5 mL). If a previous pneumococcal conjugate vaccine was administered, at least 2 months should elapse before administering VAXNEUVANCE.			
Vaccination schedule for individuals 18 years of age and older				
Individuals 18 years of age and older	1 dose (0.5 mL). The need for revaccination with a subsequent dose of VAXNEUVANCE has not been established.			

1.3 Route of Administration:

For intramuscular use only

1.4 Pharmacological Aspects:

Pharmacodynamic Properties

Mechanism of Action

VAXNEUVANCE contains 15 purified pneumococcal capsular polysaccharides from Streptococcus pneumoniae (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F, with the additional serotypes 22F and 33F), each conjugated to a carrier protein (CRM197). VAXNEUVANCE elicits a T-cell dependent immune response to induce antibodies that enhance opsonisation, phagocytosis, and killing of pneumococci to protect against pneumococcal disease. Immune responses following natural exposure to Streptococcus pneumoniae or following pneumococcal vaccination can be determined by measuring opsonophagocytic activity (OPA) and immunoglobulin G (IgG) responses. OPA represents functional antibodies and is considered an important immunologic surrogate measure of protection against pneumococcal disease in adults. In children, a serotype-specific IgG antibody level corresponding to $\geq 0.35 \ \mu g/mL$ using the WHO enzyme linked immunosorbent assay (ELISA) has been used as the threshold value for the clinical evaluation of pneumococcal conjugate vaccines.

<u>Special populations</u> <u>Nursing Mothers</u> It is not known whether this vaccine is excreted in human milk. <u>Pediatric Use</u> The safety and effectiveness of VAXNEUVANCE in children younger than 6 weeks of age have not been established.

2.0 SUMMARY REPORT

2.1 Quality

2.1.1 Active Substance

The active substance of Vaxneuvance is Monovalent Bulk Conjugates (MBC) of each serotype (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F, and 33F). This MBC is made of two intermediates i.e., purified bulk (powder) of Pneumococcal Polysaccharides [PnPs] of 15 serotypes and Cross Reactive Material 197 [CRM197] carrier protein) by conjugation process. The PnP of 15 serotypes are derived from *Streptococcus pneumoniae* (*S. pneumoniae*) bacterium. CRM197 is a nontoxic (enzymatically inactive) form of diphtheria toxin (DT) from *Corynebacterium diphtheriae* C7. The characterization and quality attributes of Master Cell Bank (MCB) and Working Cell Bank (WCB) of each PnP and CRM197 have been conducted and concluded as satisfactory.

Process validation of PnP (including inactivation by liquefied phenol), CRM197 and MBC (including conjugation via reductive amination) have been conducted and the results from at least three consecutive batches of respective intermediates and active substance demonstrated that all batches met the pre-defined validation criteria.

The proposed 10-year shelf life of PnP and CRM197 are justified based on the presented longterm stability data conducted at condition ≤ -60 °C/ambient humidity. For MBC, all data for studies at the long-term condition (≤ -60 °C) met the commercial acceptance criteria through all tested 10-year intervals.

The PnP Powders is manufactured at Merck Sharp & Dohme, West Point, Pennsylvania, USA (inspected by National Health Surveillance Agency (ANVISA), Brazil) while CRM197 is manufactured at Boehringer Ingelheim RCV, GmbH & Co KG (BI-RCV), Vienna, Austria (inspected by Federal Office for Safety in Health Care (BASG), Austria) and the MBC is manufactured at MSD International GmbH T/A, MSD Ireland (Brinny), Brinny, Innishannon, Co. Cork, Ireland (inspected by Health Products Regulatory Authority (HPRA), Ireland).

2.1.2 Finished Product

VAXNEUVANCE finished product manufacturing process consists of four main steps: (1) Buffer and intermediate preparations; (2) Thawing and transfer of monovalent bulk conjugates (MBCs); (3) Formulation; (4) Filling, visual inspection and storage. The process validation results of the three batches provide documented evidence establishing that the manufacturing process for Vaxneuvance consistently produces product meeting predetermined quality attributes.

The proposed shelf life for drug product as 24 months is justified based on the current real time data tested to 24 months and supportive data from the Phase 3 Clinical batch WL00068290 tested through 30 months when stored under the recommended storage condition of $5^{\circ}C$ (2 to $8^{\circ}C$)/ambient humidity.

The product has passed the evaluation on analytical protocol and method validation in accordance with the ICH Q2 (R1) guidelines.

VAXNEUVANCE is manufactured by MSD International GmbH T/A MSD Ireland (Carlow) Dublin Road, Carlow, Co. Carlow, Ireland (inspected by Health and Youth Care Inspectorate, Netherlands).

2.2 Non-Clinical Study

Three pharmacology in-vivo immunogenicity studies (Study NZWR-14, Study NZWR-16 & Study NZWR-17) were performed in New Zealand White (NZW) rabbits to evaluate immunogenicity of VAXNEUVANCE formulations using a compressed vaccination regimen where rabbits received either one-half or one-fifth of a human dose of vaccine. Another 2 pharmacology in-vivo immunogenicity studies (Study IRM-6 & Study IRM-9) were conducted in infant rhesus monkeys to compare the immune responses induced by VAXNEUVANCE and Prevnar 13[™], and to test formulations of VAXNEUVANCE. Under toxicology, three repeat-dose toxicity studies (TT #08-1077, TT #16-1044 & Report TT #18-1028) and three developmental and reproductive toxicology (DART) studies (TT #19-7090, TT #19-7170 & TT #19-7190) have been conducted using rats. All toxicology studies have been conducted at the GLP certified facilities and according to OECD principles.

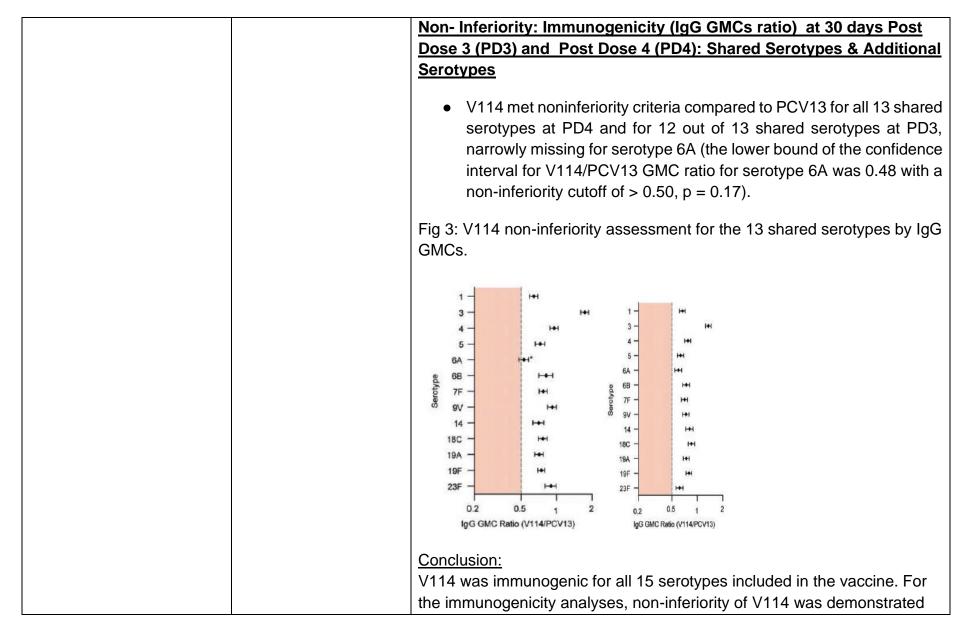
Nonclinical immunogenicity studies have demonstrated that VAXNEUVANCE is immunogenic in both New Zealand white rabbits and infant rhesus monkeys. The totality of the data from the repeat-dose toxicity studies were also evaluated the effects of an immune response to Vaxneuvance in age-appropriate populations and support the pediatric development program. From the DART studies, no Vaxneuvance-related maternal or developmental toxicity was observed at a dose providing 200-fold multiples over the current proposed marketed Vaxneuvance dose and formulation for adults on a μ g/kg basis (32 μ g of polysaccharide conjugated to CRM197 with 125 μ g APA).

In conclusion, the non-clinical immunogenicity and toxicity profiles of VAXNEUVANCE have been thoroughly evaluated and concluded as satisfactory.

2.3 Clinical Study

2.3.1 Immunogenicity

The major pivotal studies were provided to support the indications:


Study Type & Design (N)	Objective of the Study	Results				
Paediatrics (2+1 doses) 6 wks to less than 2 yrs old						
Study Type & Design (N)Study V114-025 (PNEU- PED-EU-1)Martinon-Torres, F. et.al: A Phase III, multicenter, randomized, double-blind, active comparator controlled study to evaluate the safety, tolerability, and immunogenicity of V114 compared with PCV13 in healthy infants (PNEU-PED- EU-1). Vaccine 41 (2023) 3387–33981:1 N= 591 [Vaxneuvance (V114)] N= 593 (Prevenar 13)						
Dose given at 2, 4, and 11 - 15 months (full term) or 2, 3, 4 and 11 to 15 months (preterm) (Co-administration with Infranrix Hexa and Rotarix)						

Technical Evaluation Summary NPRA Vaxneuvance / December 2023

includes 5.4% of preterm	V114 PCV13 Non-informative as a service servic
nfant)	Pneumococcal %, %, Difference Percentage point difference (1/14-PCV13) serotype 2b,35 n (20,5% C) at 30 days post-biddler does
	1 96.7 539 99.4 537 − 2.8 (− 4.7, − 1.3) 1 →
	3 92.0 539 83.8 537 8.2 (4.4, 12.2) 3
	4 95,7 539 97,9 535 -2.2 (-4.5, -0.1) 4
	5 99.1 539 100.0 535 −0.9 (−2.2, −0.2) 5 ++
	6A 98.5 539 98.9 535 -0.4 (-1.9, 1.1) 6A H
	5
	B 6B 97.4 539 99.1 535 −1.7 (~3.5, −0.1) 6B
	80 7F 99.8 539 99.8 536 0.0 (~0.9, 0.9) 7F 바이
	5 9V 98.9 539 100.0 537 −1.1 (−2.4,−0.4) 9V →
	14 99,8 539 100,0 537 -0,2 (~1,0,0,5) 14 M
	18C 98,9 539 99,3 536 −0.4 (−1,8, 0,9) 18C +
	19A 99.1 539 100.0 535 − 0.9 (− 2.2, − 0.2) 19A →
	19F 99,5 539 100,0 537 →0.4 (~1,3,0,3) 19F M
	23F 96.8 538 97.4 535 -0.5 (-2.7, 1.5) 23F
	-15 -10 0 15 Percentage point difference (V114-PCV13)
	(**************************************
	V114 PCV13 Superiority analysis
	V114 PCV13 Sentypes 22F, 33F % % Difference Percentage point difference (V114-PCV13) 2 serotypes ≥0,35 n (295% CI) at 30 days poshodder dose
	2 7 7 7 7 7 7 7 7 7 7
	g <u>6</u> ∰ 33F 99.1 539 4.2 530 94.9 (92.7; 66.5) 33F
	99
	Percentage point difference (V114-PCV13)
	Figure 2: Forest plot of the proportions of participants with serotype-
	enerific anti-PnP laC GMCs at 30 days PTD
	specific anti-PnP IgG GMCs at 30 days PTD
	specific anti-PnP IgG GMCs at 30 days PTD
	V114 PCV13 Superiority analysis
	V114 PCV13 Superiority analysis Serotypes 22F, 33F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC ratio (95% CI) GMC ratio (V114/PCV13) 2 serotypes GMC n GMC n GMC ratio (95% CI) 2 serotypes 22F 5.98 539 0.08 535 71.79 (65.16, 79.10) 22F
	V114 PCV13 Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC ratio (95% Cl) Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC n GMC ratio (95% Cl) GMC ratio (V114/PCV13) at 30 days post-toddler dost 33F 3.41 539 0.07 530 46.58 (42.19, 51.42) 33F 0,5 1 2 GMC ratio log ₁₀ scale GMC ratio log ₁₀ scale 1
	V114 PCV13 Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC n GMC ratio (95% CI) Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC n GMC ratio (95% CI) GMC ratio (V114/PCV13) at 30 days post-toddler dos 33F 3.41 539 0.07 530 46.58 (42.19, 51.42) 33F 1 0,5 1 2 GMC ratio log ₁₀ scale (V114/PCV13) GMC ratio log ₁₀ scale (V114/PCV13) GMC ratio log ₁₀ scale
	V114 PCV13 Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC ratio (95% Cl) Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC n GMC ratio (95% Cl) GMC ratio (V114/PCV13) at 30 days post-toddler dost 33F 3.41 539 0.07 530 46.58 (42.19, 51.42) 33F 0,5 1 2 GMC ratio log ₁₀ scale GMC ratio log ₁₀ scale 1
	V114 PCV13 Superiority analysis Serotypes 22F, 33F 2 serotypes GMC n GMC n GMC ratio (95% Cl) Superiority analysis Serotypes 22F, 33F 22F 5,98 539 0,08 535 71.79 (65,16, 79.10) 22F 1 33F 3.41 539 0.07 530 46.58 (42.19, 51.42) 33F 1 2 0,5 1 2 GMC ratio log, scale (V114/PCV13) GMC ratio log, scale 1 2 33F 3.41 539 0.07 530 46.58 (42.19, 51.42) 33F 1 2 0,5 1 2 GMC ratio log, scale 1 2 3
	$\frac{V114}{2 \text{ serotypes } GMC \text{ n}} = \frac{V114}{2 \text{ serotypes } GMC \text{ n}} = \frac{GMC \text{ n}}{33F} = \frac{GMC \text{ n}}{3.41} = \frac{GMC \text{ n}}{33F} = \frac{GMC \text{ n}}{3F} $
	$\frac{V114}{2 \text{ serotypes } GMC \text{ n}} \frac{PCV13}{(95\% \text{ Cl})} \qquad \begin{array}{c} Superiority \text{ analysis} \\ Serotypes 22F, 33F \\ GMC \text{ ratio } (95\% \text{ Cl}) \\ 33F & 3.41 & 539 \\ \end{array}$
	$\frac{V114}{2 \text{ serotypes } GMC \text{ n}} \frac{FCV13}{GMC \text{ ratio}} \frac{GMC \text{ ratio}}{(95\% \text{ CI})} \frac{Superiority \text{ analysis}}{Serotypes 22F, 33F} GMC \text{ ratio} (V114/PCV13)}{33F} \frac{3.41}{33F} \frac{3.41}{3.41} \frac{539}{539} \frac{0.07}{530} \frac{535}{46.58} \frac{(42.19, 51.42)}{46.58} \frac{33F}{46.58} \frac{1}{42.19} \frac{1}{33F} \frac{1}{4.58} \frac{1}{40.58} \frac{1}{4$

Study Type & Design (N)	Objective of the Study			R	esults		
	Paediatrics (3	s+1 doses) 6 w	ks to less	than 2 yrs	s old		
Study P029V114 (PNEU- PED) <i>Lupinacci, R. et.al</i> : A Phase III, multicenter, randomized, double-blind, active comparator	To evaluate the safety, tolerability, and immunogenicity of a 4 -dose regimen of V114 in healthy infants (approximately 2 months of age (42 to	Dose 3 (PD3) • V114 m	ty: Immun Shared S net non-infe	ogenicity erotypes eriority crit	(Response rate) at <u>& Additional Seroty</u> eria by IgG response npared to PCV13.	<u>pes</u>	
controlled study to evaluate the safety, tolerability, and immunogenicity of a 4- dose of V114, a 15-valent pneumococcal conjugate vaccine, in healthy infants. <i>Vaccine 41 (2023) 1142-</i> <i>1152</i>	90 days inclusive) without prior administration of any pneumococcal vaccine)	 V114 a serotyp rates and days PI 	lso met sta es unique t nd IgG GM D4. non-inferic	atistical no to V114 (se ICs at 30 prity asses	on-inferiority criteria to erotypes 22F and 33F days PD3, as well as sment by IgG respon	⁻) by IgG respo s IgG GMCs a	onse at 30
1:1 N= 858 [Vaxneuvance		Shared serotypes	Observed percenta		Difference (V114-	PCV13)	
(V114)] N= 856 (Prevenar 13)			V114	PCV13	Estimate (95% CI)	p value	
Dose given at 2, 4, 6 and		1	95.7	99.1	-3.4 (-5.2, -1.8)	<0.001	
12-15 months (Co-administration with		3	94.7	79.2	15.6 (12.1, 19.2)	<0.001	
Pentacel, Hiberix, MMR-II,		4	96.4	98.6	-2.2 (-4.0, -0.6)	<0.001	
Varivax, Vaqta		5	95.3	97.4	-2.1 (-4.2, -0.2)	<0.001	
(includes 8.6% of preterm		6A	93.7	98.6	-4.9 (-7.1, -3.0)	<0.001	
infant)		6B	88.6	92.0	-3.4 (-6.6,03)	<0.001	

7F	99.0	99.8	-0.8 (-1.9,01)	<0.001
9V	97.1	98.2	-1.0 (-2.8, 0.6)	<0.001
14	97.9	97.9	0.0 (-1.6, 1.6)	<0.001
18C	97.4	98.3	-0.9 (-2.6, 0.7)	<0.001
19A	97.9	99.7	-1.8 (-3.2, -0.8)	<0.001
19F	99.0	100	-1.0 (-2.1, -0.4)	<0.001
23F	91.5	91.8	-0.3 (-3.2, 2.7)	<0.001
response rate			ent for serotypes 22	F and 33F. Ig
response rate			ent for serotypes 22	F and 33F. Ig
response rate		s PD3.	ent for serotypes 22	F and 33F. Ig0
response rate		S PD3.		F and 33F. Ig0
response rate		S PD3.		F and 33F. Ig0
response rate		s PD3. PD3		F and 33F. Ig0
response rate	es at 30 days	S PD3.	22F	
response rate	es at 30 days	S PD3.	22F -	۲ ۱0 e Difference

			for all 15 serotypes based on response rates at PD3 and IgG GMCs at PD4.
--	--	--	--

Study Type & Design (N)	Objective of the Study	Results
	Paediatrics (Catch	n up) 7 months till less than 18 years old
StudyV114-024(PNEU-PLAN)Banniettis N. et.al: A phase III, multicenter, comparator controlled study to evaluate immunogenicity of catch-up vaccination regimens of V114, a 15-valent pneumococcal conjugate vaccine, in healthy infants, children, and adolescents (PNEU-PLAN). Vaccine 40 (2022) 6315–63251:1 N= 303 [Vaxneuvance (V114)] N= 303 (Prevenar 13)	Paediatrics (Catch	
Schedule A 7 to 11 months of age (PCV- naïve): 3 doses Dose 1: at randomization Dose 2: 4 to 8 weeks after Dose 1		<u>Conclusion:</u> Overall, catch-up vaccination with V114 elicited serotype specific anti- pneumococcal IgG responses to all 15 serotypes in healthy children 7 months–17 years of age.

naïve): 2 doses Dose 1: at randomization Dose 2: 8 to 12 weeks after Dose 1 Schedule C 2 to 17 years of age (PCV- naïve or PCV-experienced): Single dose administered at randomization and at least 8		
2 to 17 years of age (PCV- naïve or PCV-experienced): Single dose administered at randomization and at least 8		
weeks after previous dose of PCV for participants who were PCV-experienced		

Study Type & Design (N)	Objective of the Study	Results
	Ad	dults (18 to 49 years old)
Study V114-017 (PNEU-	To evaluate the safety,	Primary Immunogenicity Results- Serotype-specific Opsonophagocytic
DAY)	tolerability, and	activity (OPA) responses at Day 30 (Following vaccination with V114)
	immunogenicity of V114	 V114 was immunogenic in pneumococcal vaccine-naïve,
Phase 3, Multicenter,	in pneumococcal	immunocompetent adults 18 to 49 years of age with or without risk factors
Randomized, Double-blind,	vaccine-naïve,	for pneumococcal disease as assessed by OPA GMTs at 30 days
Active Comparator-controlled	immunocompetent adults	postvaccination (Day 30) for all 15 serotypes contained in the vaccine.
Study to Evaluate the Safety,	18 to 49 years of age with	
Tolerability, and	or without risk factors for	
Immunogenicity of V114	pneumococcal disease.	
Followed by Administration of	•	

PNEUMOVAX [™] 23 Six Months Later in Immunocompetent Adults Between 18 and 49 Years of Age at Increased Risk for Pneumococcal Disease N= 1515 [Vaxneuvance]	 Primary Immunogenicity Results- Serotype-specific Opsonophagocytic activity (OPA) responses at Day 30 (Following vaccination with PPV23) V114 or Prevnar 13 followed by PPV23 was immunogenic for all 15 serotypes as assessed by serotype-specific OPA GMTs and IgG GMCs at 30 days postvaccination with PPV23. PPV23 elicited an immune response for serotypes 22F and 33F at 30 days postvaccination with PPV23 in the Prevnar 13 group.
(V114)] N= 380 (Prevenar 13) 1 dose V114 or Prevenar 13 given (Day 1 1 dose Pneumovax 23 (Month 6)	Conclusion: V114 induces immune responses for all 15 pneumococcal serotypes as assessed by OPA GMTs and IgG GMCs at 30 days postvaccination with V114. V114 can be followed by PPV23 at 6 months as immune response is maintained for shared serotypes and the sequential administration is well tolerated.

Study Type & Design (N)	Objective of the Study	Results					
Adults (≥50 years old)							
Study V114-019 (PNEU- AGE) A Phase 3, Multicenter, Randomized, Double-blind, Active Comparator- controlled Study to Evaluate the Safety, Tolerability, and Immunogenicity of V114 in	To evaluate the safety, tolerability, and immunogenicity of a of V114 in healthy adults 50 years of age or older without a history of invasive pneumococcal disease or prior administration of any pneumococcal vaccine	 Primary Immunogenicity Results- Serotype-specific OPA Responses at 30 Days Post Vaccination V114 met non inferiority criteria for the 13 shared serotypes as assessed by serotype-specific OPA GMTs at 30 days post vaccination. The lower bound of the 95% CI of the estimated OPA GMT ratio (V114/Prevnar 13) was >0.5 for all shared serotypes V114 met superiority criteria for the 2 serotypes unique to V114 as assessed by serotype specific OPA GMTs at 30 days post vaccination. The lower bound of the 95% CI of the estimated OPA GMT ratio (V114/Prevnar 13) was >0.5 for all shared serotypes 					

Healthy Adults 50 Years of						
Age or Older	F	Figure 11-1 Forest Plot of OPA GMT Ratios at Day 30 (Per-Protocol Population)				
1:1						
N= 600 [Vaxneuvance	Pneumococcal Serotype		V114 Prevnar 13™			
(V114)]	13 Shared Serotypes	n	GMT n GMT	GMT Ratio (95% CI)		
	1	598 2	256.3 598 322.6	0.79 (0.66, 0.96)		
N= 600 (Prevenar 13)	3	⊢•⊣ 598 2	216.2 598 135.1	1.60 (1.38, 1.85)		
	4 ⊨⊷⊣	598 1	1125.6 598 1661.6	0.68 (0.57, 0.80)		
	5 ⊣⊷⊣	598 4	447.3 598 563.5	0.79 (0.64, 0.98)		
	6A H		5407.2 598 5424.5	1.00 (0.84, 1.19)		
	6B H		4011.7 598 3258.2	1.23 (1.02, 1.48)		
	7F ⊢•-I	597 4	4617.3 598 5880.6	0.79 (0.68, 0.90)		
	9V ⊢•–∣	598 1	1817.3 597 2232.9	0.81 (0.70, 0.94)		
	14	598 1	1999.3 598 2656.7	0.75 (0.64, 0.89)		
	18C 🛏	• · · · · · · · · · · · · · · · · · · ·	2757.7 598 2583.7	1.07 (0.91, 1.26)		
	19A ⊢⊷–	598 3	3194.3 598 3979.8	0.80 (0.70, 0.93)		
	19F ├	598 1	1695.1 598 1917.8	0.88 (0.76, 1.02)		
	23F		2045.4 598 1740.4	1.18 (0.96, 1.44)		
	0.5 1	2				
		GMT RatoLog ₁₀ Stale (V114/Prevvar 13")				
	2 Serotypes	V1	114 Prevnar 13™			
	Unique to V114		GMT n GMT	GMT Ratio (95% CI)		
	22F	l→l 594 237	75.2 586 74.6	31.83 (25.35, 39.97)		
	33F +	598 799	94.7 597 1124.9	7.11 (6.07, 8.32)		
	0.5 1 2					
		GMT Ratio Logo Scale				
	(V114Prevnar 13 ^m)					
	Conclusion:					
		In pneumococcal vaccine-naïve adults ≥50 years of age, V114 elicits an immune response that is comparable to Prevnar 13 for the shared serotypes, and higher than Prevnar 13 for serotypes 3, 22F, and 33F.				
	-					
	serotypes, and hi					

2.3.2 Safety

Paediatric

- V114 is well tolerated in infants (healthy or preterm receiving 3 or 4 doses) and children 6 weeks through 17 years of age with a safety profile that is comparable to that of Prevenar 13.
- The safety profile of a catch-up vaccination schedule in healthy infants and children from 7 months through 23 months of age is consistent with the safety profile of a routine vaccination schedule initiated from 6 to 12 weeks of age.
- Post vaccination AEs were generally mild and the most frequently reported AEs after each dose of V114 were the solicited AEs of irritability, somnolence, injection-site pain, injection-site erythema, decreased appetite, injection-site swelling, and injection-site induration.
- V114 is also well tolerated when used concomitantly with other routine paediatric vaccines as part of recommended paediatric vaccination schedules.

Adult

- V114 is well tolerated when administered as a single dose to adults ≥18 years of age with and without prior pneumococcal vaccination, with a safety profile that is generally comparable with Prevnar 13.
- The most frequently reported adverse events were solicited injection site and systemic events which were injection-site pain, fatigue and myalgia and were comparable across the intervention groups. Of the participants with solicited AEs, the majority had events of short duration (≤3 days).

3.0 CONCLUSION:

Drug Control Authority (DCA) on the 391th meeting on 7 December 2023 has decided to approve the registration of this product with the following indication:

VAXNEUVANCE is indicated for active immunisation for the prevention of invasive disease, pneumonia and acute otitis media caused by Streptococcus pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F in infants, children and adolescents from 6 weeks to less than 18 years of age.

VAXNEUVANCE is indicated for active immunisation for the prevention of invasive disease and pneumonia caused by Streptococcus pneumoniae serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F in individuals 18 years of age and older.

VAXNEUVANCE may not prevent disease caused by S. pneumoniae serotypes that are not contained in the vaccine.

The use of this vaccine should be in accordance with official recommendations.